Ian Robinson on Coupling

In my opinion, coupling is the most fundamental attribute of a system architecture and tight coupling is probably the most common architectural problem I see in distributed systems. The manner in which system components interact can be a chief determinant of the scalability and reliability of the final system.

So I really like Ian Robinson’s post on Temporal and Behavioural Coupling where he uses two coupling dimensions and the inevitable magic quadrant to classify systems based on their degree of temporal and behavioural coupling.

See Ian’s post for the slick professional graphics, but to summarise – event-oriented systems with low coupling¬† occupy the “virtuous” third quadrant of the matrix. Conversely the brittle “3-tier” applications that many of us struggle with, occupy the “evil” first quadrant where coupling in both dimensions is high.

However I’m a little miffed to see no mention of my favourite “document-oriented message” in Ian’s diagram. As Bill Poole writes; document messages have lower behavioural coupling than command messages, but more than event messages. So would you put document-oriented messages near the middle top of the matrix between command-oriented and event-oriented messages? Unfortunately that would break the symmetry. But it also highlights another problem.

Any type of message – document, command or event-oriented could temporally be tightly or loosely coupled. Temporal coupling is more a property of the message transport than of the message type. So I suggest that the two coupling dimensions are characterised as follows:

  • Temporal coupling – characterised by message transport from RPC (tight coupling) through to MOM (loose coupling).
  • Behavioural coupling – characterised by the message type from event-oriented (tight) through document-oriented to event-oriented (loose).

It so happens that distributed 3-tier systems generally employ both command-oriented messages and RPC transports – hence making them inherently “evil”. Whereas events (being asynchronous)¬† are naturally virtuous by typically being carried over MOM transports (it’s difficult to request an event notification).

Between heaven and hell, it is in the murky mortal realms of SOA where we need to be constantly mindful of the interactions between message type and transport – lest our system ends up in limbo.

56 Architecture Case Studies

The recent brouhaha about Twitter scalability has highlighted the growth of the latest spectator sport in the blogosphere – “armchair architect”. Everyone’s a Monday morning expert on which language/database/framework is/isn’t the secret to extreme scalability. The real secret is the architecture and organizational maturity. Here are some case studies to prove it:

A Conversation with Werner Vogels where Werner talks about using service-orientation to scale out massively distributed services which power the Amazon e-commerce platform. This is one of my favourites because it covers organizational as well as technical aspects of scalability. One of the unique attributes of Amazon is that service-orientation pervades everything – even their organizational structure. Developers are responsible for running their own services.Werner characterises the adoption of services as a challenging and major learning experience, but it has become one of their main strategic advantages. Key lessons learned:

  • service-orientation is an excellent technique to achieve isolation and high levels of ownership and control
  • prohibiting direct database access allows scaling and reliability improvements without affecting clients
  • a single unified service access mechanism supports service aggregation, routing & tracking
  • service orientation improves development and operational processes leading to more agility
  • giving developers operational responsibility enhances the quality of the services.

The eBay Architecture (PDF) covers the evolution of eBay from 1998 to 2006. It’s a great example of how continuous reinvention is needed to keep up with rapidly growing scaling requirements. Frank Sommers writes a good summary and discussion where he argues that organizational capability is just as important as technical architecture for scalability. Another key ingredient of the eBay story is the ability to discard “conventional wisdom” when required. This is covered in an interview with Dan Pritchett, revealing some of the “rules” that eBay bends in order to scale.

  • eBay.com doesn’t use transactions – mainly for scalability and availability reasons
  • different data is treated in different ways – so best effort suffices for some
  • references the CAP theorem – consistency, availability, partitioning – pick any two
  • many have arrived at the same idea – and transactions are the first to go

Scalable Web Architectures is a great presentation on scalable web architectures in general and Flickr in particular. Also check out Cal Henderson’s list of his other presentations.

Architectures You’ve Always Wondered About provides slides from QCon London 2009 presentations. Case studies about eBay, Second Life, Yahoo!, Linked-In and Orbitz.

Avoiding the Fail Whale is a video in which Robert Scoble interviews architects from FriendFeed, Technorati and iLike.

Improving Running Components at Twitter – Evan Weaver describes how Twitter learned to scale by moving to a messaging architecture.

Real Life Architectures at High Scalability – provides a huge collection of pointers to architecture case studies from around the web.

The benefits of an ESB

In my last post on this topic I talked about the concept of an ESB. Here I talk about why you would want one.

There are plenty of whitepapers, analyst reports and vendor statements about the features and functions of the various ESB products. In my experience, the key advantages of using an ESB are less about features and functions and more about how you use it.

Standardization

One of the primary advantages of an ESB is that it gives you a standardized platform for integration. When everyone is using the same tools you can develop enterprise-wide frameworks, patterns and best practices for building re-usable services. Without a unifying platform, you get a divergence of integration methods which leads to inconsistency and higher cost of management and change. So an ESB platform helps with design-time governance. Note that this is not the same as standardization in the sense of using web-services standards. The important thing is that you use the ESB to support your own enterprise standards. These may be based on external standards – but that may be of secondary importance.

Loose Coupling

The bus architecture of an ESB encourages you toward a loosely coupled architecture.

  • Physically decoupled by making use of message passing mechanisms (e.g. JMS) versus direct network connections (e.g. HTTP).
  • Semantically decoupled by use of message transformation so that services are exposed in a system-neutral format which reduces application lock-in and reduces the cost of change.

Scalability and Reliability

Physical loose-coupling provides scalability advantages such as high-availability, fault-tolerance and load balancing. The messaging layer in the ESB directs messages between service endpoints to the appropriate instance of the endpoint. For example, in the event of a service provider failure, messages will be redirected to a backup provider – thus supporting high availability. In the case of load balancing, messages are distributed between redundant providers (or consumers) to handle high volumes of message traffic. You could say that physical loose-coupling supports change at the “micro” level where short term changes in the system topology can be compensated for via real-time message redirection.

Routing and mediation

Message routing supports scalability and fault tolerance. An ESB can also be used to support business-level routing and mediation. For example content-based routing allows services to be invoked based on the content of a service request. A business example would be routing of a customer enquiry to the branch where that customer account is located. A technical example would be the routing of a service request based on the version of the service being invoked.

Complex message exchange patterns

Traditional HTTP-based services support only one-to-one request-reply MEPs. An ESB supports more complex MEPs such as asynchronous one-way messaging and to multiple subscribers using topic-based messaging. Asynchronous publish and subscribe mechanisms support new ways of intermediating service consumers and subscribers – such as auditing, service monitoring – which are extremely useful for runtime management and governance of your services. Beyond mere governance, higher level business functions such as complex event processing (CEP) and business activity monitoring (BAM) are supported by this ability to “listen in” to service traffic on the ESB.

The benefits of an ESB that I’ve described above stem largely from the architecture of an ESB and in particular from the use of a message bus as the primary underlying transport. But it is important to understand that these benefits don’t automatically come “out of the box”. Your solution architecture (and your architects) must recognise and utilise the architectural principles underlying the ESB.

What is an ESB and why do I need one?

A question I often get is “what is an ESB and why do I need one”? This question is motivated by a number of concerns; non-technical people have heard the term but don’t understand the concept, semi-technical people are trying to figure out conflicting vendor definitions, and technical people are confused by the debate between different service enablement approachs – RESTful versus ws-* versus middleware-supported hybrids.

The Elevator Pitch

A service bus provides a uniform and consistent platform to allow service providers and service consumers to interoperate. An ESB provides benefits such as:

  • standardization
  • loose coupling
  • resilience and high availability
  • monitoring and intermediation

Hardware

I’m not sure of the provenance of the word “bus” as it is applied in the technical domain (I’m sure there is some interesting etymology there) but you can confidently trace it back to the concept of a computer hardware bus. The idea of a hardware bus (or backplane) is that hardware components – such as sound-cards, video cards, floating point accelerators, tape-drives, barcode scanners etc – can all slot into and interoperate through a shared infrastructure. By supporting a standard hardware interface and a standard software protocol, the hardware bus abstracts the details of each individual hardware component. The key features of the harwdare bus are:

  • standardized hardware connectivity to the backplane
  • standardized software protocol between each component and the backplane
  • hardware components can operate independently without having to know details about each other
  • a single infrastructure replaces multiple point-to-point connections between components (i.e. does away with a lot of ad hoc soldering).

Software

Networked systems arrived in the seventies and grew out of control in the eighties. Early network infrastructures such as Unix sockets were hard-wired point-to-point affairs with little or no abstraction of the the two programs that were working together.

The idea of a software bus is that software components can work together – yet independently – via a standardized message passing mechanism that would abstract away the need to create individual network connections between components. The software bus would take care of routing messages to the required location and also take care of all that hard stuff like quality-of-service, reliability and scalability. This is equivalent to standardizing the “hardware connectivity” in the hardware bus. TIBCO’s predecessor – Teknekron – articulated the concept of the software bus in the early nineties

The Service Bus

So the hardware bus standardizes hardware connectivity and the software bus standardizes software connectivity. The Service Bus has refined the concept of the software bus by taking a more service-oriented approach and adding support for the XML stack underlying web services and transport connectivity (e.g. bridging HTTP to JMS).

So why do you need an ESB? More on that anon…